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Abstract. Quantum weakdynamics (QWD) as an SU(3)I gauge theory with the Θ vacuum term is con-
sidered to be the unification of the electroweak interaction as an SU(2)L ×U(1)Y gauge theory. The grand
unification of SU(3)I × SU(3)C beyond the standard model SU(3)C × SU(2)L × U(1)Y is established by
the group SU(3)I . The grand unified interactions break down to weak and strong interactions at a new
grand unification scale, 103 GeV, through dynamical spontaneous symmetry breaking (DSSB); the weak
and strong coupling constants are the same, αi = αs � 0.12, at this scale. DSSB is realized by the conden-
sation of scalar fields, postulated to be spatially longitudinal components of gauge bosons, instead of Higgs
particles. Quark and lepton family generation, the Weinberg angle sin2 θW = 1/4, and the Cabbibo angle
sin θC = 1/4 are predicted. The electroweak coupling constants are αz = αi/3, αw = αi/4, αy = αi/12,
and αe = αi/16 � 1/137; there are symmetric isospin interactions.

1 Introduction

The standard model (SM) SU(3)C × SU(2)L × U(1)Y
gauge theory [1,2] is quite successful for the phenomenol-
ogy of elementary particle physics. However, there are still
many unexplained phenomena in the SM: for instances,
many free parameters, three family generations for lep-
tons and quarks, matter mass generation, the Higgs prob-
lem or vacuum problem, dynamical spontaneous symme-
try breaking (DSSB) beyond spontaneous symmetry
breaking, the neutrino mass problem, etc. In order to re-
solve these problems, grand unified theories (GUTs) were
proposed [3]. Nevertheless, grand unification of the strong
and electroweak interactions is not complete, and GUTs
also have model dependent problems: the hierarchy prob-
lem, proton decay, and the Weinberg angle are problems
in SU(5) gauge theory [3]. On the other hand, two impor-
tant observations can be made. One is that Higgs particles
have not been observed yet; this suggests DSSB rather
than spontaneous symmetry breaking. The other one is
that the experimental strong coupling constant αs � 0.12
at the energy scale of the intermediate Z0 vector boson
mass [4] and the experimental weak coupling constant
αw � 0.03 at the energy scale of the W± intermediate
vector boson mass [5]; the two coupling constants have
the same value αi = αs � 0.12 around the 103GeV en-
ergy scale if an SU(3)I gauge theory with the coupling
constant αi for the weak force is adopted. These phe-
nomena strongly suggest that all the theoretical prob-
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lems and experimental facts may thus easily be resolved
if quantum weakdynamics (QWD) as an SU(3)I gauge
theory for the weak force is broken down to the Glashow–
Weinberg–Salam (GWS) model, the SU(2)L×U(1)Y the-
ory [1] through DSSB. The aim of this paper accordingly
is to propose that QWD as an SU(3)I gauge theory for
the weak force provides hints for the challenging problems
and ways to unify the weak and strong force systemat-
ically: QWD is analogous to quantum chromodynamics
(QCD) as an SU(3)C gauge theory for the strong force.
Many free parameters in the SM must be understood in
the context of the grand unification scheme. More pre-
cisely, QWD as an SU(3)I gauge theory is proposed to
be the unification of the SU(2)L×U(1)Y electroweak the-
ory [1], and the grand unification of QCD and QWD is
proposed as the unification of the weak and strong inter-
actions [2,6,7] beyond the SM. The proposed group chain
is thus given by H ⊃ SU(3)I × SU(3)C for grand uni-
fication, weak, and strong interactions respectively. The
grand unified group H of the group SU(3)I × SU(3)C
beyond the SM, SU(3)C ×SU(2)L×U(1)Y , provides cou-
pling constants αw = αs � 0.12 at a new grand unification
scale around 103GeV, which might be the resolution of the
hierarchy problem of the conventional grand unification
scale 1015GeV [3]. QWD provides plausible explanations
for the Weinberg angle, the Cabbibo angle, quark and
lepton families, a modification to the Higgs mechanism,
fermion mass generation, etc. This scheme can be sub-
stantiated through further quantum tests; it gives rise to
several predictions such as the relation with inflation, the
analogy between weak and strong force, the breaking of
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discrete symmetries, etc. The present work is restricted to
the real four dimensions of spacetime without considering
supersymmetry or higher dimensions. This work is based
on phenomenology below the grand unification scale: the
electroweak and strong interactions.

As a step toward the grand unification of fundamental
forces or toward the systematic description of the evolu-
tion of the universe, a new grand unification scale of the
SU(3)I ×SU(3)C symmetry around 103GeV is necessary.
QWD as an SU(3)I gauge theory provides the unification
of the electroweak interaction being an SU(2)L × U(1)Y
gauge theory [1]. This scheme resolves the free parameters
in the GWS model. In order to show that electroweak in-
teractions stem from an SU(3)I gauge theory, the roles
of scalar fields, parameterized by spatially longitudinal
components of gauge bosons, are emphasized instead of
the roles of Higgs particles: unsatisfactory factors of the
Higgs mechanism [8] can be overcome in this scheme. The
essential point is that the system at high energies expe-
riences the stage of DSSB and the effective coupling con-
stant acquires the dimension of inverse energy squared due
to massive gauge bosons through DSSB; the effective cou-
pling constant chain due to massive gauge bosons is GH ⊃
GF ×GR for grand unification, weak, and strong interac-
tions respectively. The DSSB mechanism is adapted to
all the interactions characterized by gauge invariance, the
physical vacuum problem, and discrete symmetry break-
ing; the DSSB mechanism is applied to strong interac-
tions having analogous features [6,7]. The DSSB of local
gauge symmetry and global chiral symmetry triggers the
(V +A) current anomaly. This study suggests that sextet
isospin states in two octets of triplet isospin combinations
for QWD can produce the three family generations of lep-
tons and quarks. DSSB is closely related to the breaking of
discrete symmetries, parity (P ), charge conjugation (C),
charge conjugation and parity (CP ) and time reversal (T ).
Photons are regarded as massless gauge bosons, Nambu–
Goldstone (NG) bosons [9], appearing during DSSB. The
quark or lepton mass is generated as the DSSB of gauge
symmetry and discrete symmetries, which is motivated by
the parameter Θ representing the surface term. Fermion
mass generation introduces the common features of con-
stituent particle mass, the dual Meissner effect, and hy-
perfine structure. The Θ term plays important roles in the
DSSB mechanism of the gauge group and in the quanti-
zation of the fermion space and vacuum space.

This paper is organized as follows. Section 2 proposes
QWD as an SU(3)I gauge symmetry and describes the
common features of DSSB. Section 3 explicitly shows the
generation of the SU(2)L × U(1)Y gauge symmetry from
the SU(3)I gauge symmetry. In Sect. 4, the grand unifica-
tion of SU(3)I × SU(3)C introduces the unified coupling
constant at a new grand unification scale. The fermion
mass generation mechanism is addressed as being the re-
sult of the breaking of gauge and chiral symmetries in
Sect. 5. The Θ constant and quantum numbers are dis-
cussed in Sect. 6. Section 7 describes a comparison of
QWD, GWS, and GUT. Section 8 is devoted to our con-
clusions.

2 Quantum weakdynamics
as an SU(3)I gauge theory

The generation of the electroweak SU(2)L×U(1)Y theory
from QWD as the SU(3)I gauge theory has several im-
plications. It suggests the DSSB mechanism initiated by
the (V +A) current anomaly and predicts several free pa-
rameters such as the Weinberg angle, the Cabbibo angle,
isospin and electric charge quantization, a modification
to the Higgs mechanism, the three family generations of
leptons and quarks, fermion mass generation, etc.

DSSB is one of the underlying principles whose princi-
pal application is the electroweak theory; remarkably, this
unifies weak interactions with electromagnetic interactions
in a single larger gauge theory. Here, the DSSB of the weak
force from an SU(3)I gauge theory to an SU(2)L×U(1)Y
electroweak theory, the GWS model [1], is addressed as
well as the modification of the Higgs mechanism [8]; the
phase transition of the electroweak interactions takes place
through the condensation of scalar fields, which are pos-
tulated to be spatially longitudinal components of gauge
bosons, instead of Higgs particles. This scheme uses dy-
namical symmetry breaking without having to introduce
elementary scalar particles; this idea, which aims to have
DSSB with gauge interactions alone, is similar to the tech-
nicolor model [10] in this sense. Discrete symmetry viola-
tion occurs as the result of DSSB. Photons are regarded
as massless gauge bosons [9] indicating DSSB. An analogy
of superconductivity is expected as a consequence of the
condensation of scalar fields.

In this section, the common characteristics of DSSB
are discussed following the introduction of QWD: the in-
troduction of QWD, the Θ vacuum as weak CP violation,
DSSB through the condensation of scalar fields, the Fermi
weak interaction constant and massive gauge bosons, and
the breaking of discrete symmetries are addressed.

2.1 Weak interactions as an SU(3)I gauge theory

QWD is proposed as an SU(3)I gauge theory, which is an
exact copy of QCD in the form apart from the fermion
mass term; triplet isospin sources and octet gauge bosons
are introduced. A mass term violating gauge invariance
is not included but is generated through DSSB. Natu-
ral units with � = c = k = 1 are used for convenience
throughout this paper unless otherwise specified.

The Dirac Lagrangian density apart from the mass
term, L = ψ̄iγµ∂µψ, leads to the local SU(3)I gauge the-
ory invariant under the local transformation ψ → eiλ·a/2ψ,
where λ are the SU(3)I generators and a are spacetime
parameters. An SU(3)I gauge theory for the weak inter-
actions can then be established, and the SU(3)I gauge
invariant Lagrangian density is the same, apart from the
mass term, as the Lagrangian density of QCD [2] in the
form

L = −1
2
TrFµνFµν + ψ̄iγµDµψ, (1)

where ψ stands for the spinor field and Dµ = ∂µ − igiGµ

stands for the covariant derivative with the coupling con-
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stant gi. The field strength tensor is given by Fµν =
∂µGν−∂νGµ−igi[Gµ, Gν ], where spinors carry gauge fields
denoted by Gµ =

∑8
a=0G

a
µλ

a/2, a = 0, · · · , 8 with gener-
ators λa. The Gell-Mann matrices satisfy the commuta-
tion relation [λk, λl] = 2i

∑
m cklmλm where cklm are the

structure constants of the SU(3)I group. The fine struc-
ture constant αi in QWD is defined analogously to the
fine structure constant αe = e2/4π in QED: αi = g2i /4π,
where αi is dimensionless.

Three intrinsic isospin (isotope) charges (A,B,C) form
the fundamental representation of the SU(3)I symmetry
group. Fermions are combinations of three particles with
triplet isospins which produce a decuplet, two octets, and
a singlet gauge bosons; 3⊗3⊗3 = 10⊕8⊕8⊕1. Interactions
between fermions may be described by two body interac-
tions. The set of unitary 3 × 3 matrices with detU = 1
forms the group SU(3)I whose fundamental representa-
tion is a triplet. The eight gauge bosons in the octet are
for example constructed by a matrix

∑8
1 λkG

k:


G3 +G8/

√
3 G1 − iG2 G4 − iG5

G1 + iG2 −G3 +G8/
√
3 G6 − iG7

G4 + iG5 G6 + iG7 −2G8/
√
3


 , (2)

where the two diagonal gauge bosons are G3 = (AĀ −
BB̄)/21/2 and G8 = (AĀ+BB̄ − 2CC̄)/61/2.

The six off-diagonal gauge bosons are accordingly rep-
resented by

AB̄ = (G1 − iG2)/
√
2, AC̄ = (G4 − iG5)/

√
2,

BC̄ = (G6 − iG7)/
√
2, BĀ = (G1 + iG2)/

√
2,

CĀ = (G4 + iG5)/
√
2, CB̄ = (G6 + iG7)/

√
2. (3)

The isospin singlet is symmetric:

G0 = (AĀ+BB̄ + CC̄)/
√
3. (4)

It will be later realized that G0 is a weak gauge boson
with isospin zero, G1 ∼ G3 are weak gauge bosons with
isospin one, and G4 ∼ G8 are weak gauge bosons with
isospin two.

The conserved quantity Q as a total electric charge
is quantized in terms of the Gell-Mann–Nishijima formula
[11] as the subgroup U(1)e of the SU(3)I gauge symmetry
via the SU(2)L × U(1)Y gauge group. The corresponding
charge operator Q̂ is defined by

Q̂ = Î3 + Ŷ /2, (5)

where Î3 is the third component of the isospin operator
Î and Ŷ = B̂ − L̂ is the hypercharge operator Ŷ with
the baryon number operator B̂ and the lepton number
operator L̂.

2.2 Θ vacuum: Weak CP asymmetry

The (V +A) current anomaly is taken into account in anal-
ogy with the axial current anomaly [12], which is linked

to the Θ vacuum in QCD as a gauge theory [13,6]. The
normal vacuum is unstable and the tunnelling mechanism
is possible between all possible vacua. The true vacuum
must be a superposition of the various vacua, each be-
longing to some different homotopy class. The effective Θ̄
term in QCD involves both the bare Θ term relevant for
pure QCD vacuum and the phase of the quark mass ma-
trix relevant for electroweak effects. Only the latter is here
considered as the Θ vacuum responsible for the fermion
mass and is added as a single, additional non-perturbative
term to the QWD Lagrangian density

LQWD = LP +Θ
g2i

16π2
TrFµνF̃µν , (6)

where LP is the perturbative Lagrangian density (1), Fµν

is the field strength tensor, and F̃µν is the dual of the field
strength tensor. Since the FF̃ term is a total derivative,
it does not affect the perturbative aspects of the theory.
Such a term in the QWD Lagrangian represents the (V +
A) current anomaly, violates CP , T , and P symmetries,
and causes the DSSB of local gauge symmetry and global
chiral symmetry. Since the Lagrangian density for weak
interactions (1) is completely symmetric under the SU(3)I
gauge transformation, the conservation of isospin degrees
of freedom holds. Spatially longitudinal components of the
gauge fields parameterized by scalar fields condense and
then subtract the vacuum energy in the broken phase as
the system expands; scalar fields replace the roles of Higgs
bosons in the electroweak interactions. Details are given
in the following subsections.

2.3 Dynamical spontaneous symmetry breaking

DSSB requires the Θ term and scalar fields. Scalar fields
with spin zero, which replace the roles of Higgs parti-
cles, are postulated as spatially longitudinal components
of gauge fields. Therefore, scalar fields always have the
same symmetry as the gauge symmetry of the gauge fields.
DSSB is triggered by the Θ term in (6) as the surface
term, which demands the boundary condition breaking
the discrete symmetries. Due to the Θ term, some of the
scalar fields condense. There are two types of transverse
gauge fields which are left-handed (or vector) gauge fields
and right-handed (or axial-vector) gauge fields. There are
also two types of scalar fields which are real scalar fields
and pseudo-scalar fields. Among the scalar fields, pseudo-
scalar fields condense while real scalar fields remain. Dur-
ing this process, continuous and discrete symmetries are
simultaneously broken. This mechanism makes the gauge
bosons massive and massive gauge bosons break the dis-
crete symmetries in the fermion spectra. Masses of
fermions and bosons are thus acquired as a consequence
of DSSB. In fact, gauge bosons become less massive and
fermions become more massive as the condensation in-
creases. In the phase transition from the SU(3)I to the
SU(2)L × U(1)Y gauge symmetry, more massive gauge
bosons with isospin 2 become less important and less mas-
sive gauge bosons with isospin 1 become more impor-
tant. The scale of the gauge boson mass is related to the
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scale of the vacuum energy. Left-handed and right-handed
fermions are classified through the weak phase transition.
Overall, these processes simultaneously and dynamically
take place and both continuous and discrete symmetries
are spontaneously broken. In summary, the DSSB mecha-
nism involves the mass generation of fermions and bosons,
discrete symmetry breaking in fermions and bosons, and
continuous symmetry breaking in scalar and gauge fields.

A fermion possesses three intrinsic isospin degrees of
freedom; in group theoretical language, 3 ⊗ 3 ⊗ 3 = 10 ⊕
8 ⊕ 8 ⊕ 1. Two octets are mixed to form leptons and
quarks, which is discussed in the following section. In
this scheme, the masses of the gauge bosons are reduced
due to the condensation of the scalar fields, which are
postulated as spatially longitudinal components of gauge
bosons. This is very analogous to the mass generation
of the electroweak interactions through the Higgs mecha-
nism [8], but it is different in that the gauge boson mass
decreases as the condensation increases as shown in the
following subsection. Gauge fields are generally decom-
posed by charge non-singlet–singlet symmetries on the one
hand and by even–odd discrete symmetries on the other
hand: they have dual properties in charge and discrete
symmetries. The Higgs particles are not necessary in this
case, since spatially longitudinal components of the gauge
bosons play the same role as the Higgs particles. This
scheme introduces dynamical symmetry breaking without
any free parameters except the weak coupling constant.
The SU(3)I gauge symmetry is spontaneously broken to
the SU(2)L×U(1)Y gauge symmetry by the condensation
of scalar fields, postulated as spatially longitudinal com-
ponents of gauge fields. DSSB consists of two simultaneous
mechanisms; the first mechanism is the explicit symmetry
breaking of the gauge symmetry, which is represented by
the isospin factor if and the weak coupling constant gi,
and the second mechanism is the spontaneous symmetry
breaking of the gauge fields, which is represented by the
condensation of pseudo-scalar fields.

Effective gauge boson interactions can, from the La-
grangian density (6), be written

�Le = −1
2
TrFµνFµν +Θ

g2i
16π2

TrFµνF̃µν . (7)

Spatially longitudinal components of the gauge bosons
are postulated as the SU(3) symmetric scalar fields. Four
scalar field interactions are parameterized by the typical
potential

Ve(φ) = V0 + µ2φ2 + λφ4, (8)

where µ2 < 0 and λ > 0 are demanded for spontaneous
symmetry breaking. The first term of the right-hand side
corresponds to the bare vacuum energy density represent-
ing the zero-point energy. The vacuum field φ is shifted
by an invariant quantity 〈φ〉, which satisfies

〈φ〉2 = φ20 + φ21 + · · · + φ2i , (9)

where the condensation of pseudo-scalar fields is 〈φ〉 =
(−µ2/(2λ))1/2. DSSB is relevant for the surface term in
(7), Θ(g2i /16π

2)TrFµνF̃µν , which explicitly breaks down

the SU(3)I gauge symmetry to the SU(2)L×U(1)Y gauge
symmetry through the condensation of pseudo-scalar
bosons; scalar fields are also broken from the SU(3) to the
SU(2) × U(1) symmetry in this case. Θ can be assigned
to a dynamic parameter by

Θ = 10−61ρG/ρm, (10)

with the matter energy density ρm and the vacuum energy
density ρG = M4

G. The details of the Θ constant will be
discussed in Sect. 6. As the system expands, pseudo-scalar
bosons condense and accordingly the gauge boson masses
are reduced.

For QWD, being a SU(3)I gauge theory, there are nine
weak gauge bosons (n2i = 32 = 9), which consist of one
singlet gauge boson G0 with i = 0, three degenerate gauge
bosons G1 ∼ G3 with i = 1, and five degenerate gauge
bosons G4 ∼ G8 with i = 2 as shown in (2). In the case
of isospin 1 gauge bosons, G3 has the third component 0
and G1 and G2 have the third component 1. In the case
of isospin 2 gauge bosons, G8 has the third component 0,
G6 and G7 have the third component 1, and G4 and G5
have the third component 2. For the GWS model, with the
SU(2)L×U(1)Y gauge theory, one singlet gauge boson G0
with i = 0, three gauge bosons G1 ∼ G3 with i = 1, and
one gauge boson G8 with i = 2 are required. This implies
that the mixing of G3 with i = 1 and G8 with i = 2 is
the same as mixing between the third component 0 gauge
bosons, which is represented by the Weinberg mixing angle
sin2 θW � 1/4. In the DSSB mechanism of the SU(3)I to
the SU(2)L×U(1)Y gauge symmetry, more massive gauge
bosons with i = 2 reduce their roles as intermediate vector
bosons. Even though their contributions are very weak,
they appear in quark flavor mixing.

The concept of SU(2) isospin degree of freedom intro-
duces intrinsic quantum numbers. This means that the
intrinsic isospin degree of freedom can be regarded as
an intrinsic angular momentum such as the spin degree
of freedom. The isospin principal number ni in intrinsic
space quantization is very much analogous to the principal
number n in extrinsic space quantization and the intrinsic
angular momenta are analogous to the extrinsic angular
momentum. The total angular momentum has the form
J = L + S + I, which is the extension of the conventional
total angular momentum J = L + S. The intrinsic princi-
pal number ni denotes the intrinsic spatial dimension or
radial quantization: ni = 3 represents weak interactions
as an SU(3)I gauge theory.

2.4 Effective coupling constant and gauge boson mass

Weak interactions are generated by the emission and ab-
sorption of weak gauge bosons. Gauge bosons are the
analogs of photons for the electromagnetic force and glu-
ons for the color force. Contrary to the photon, the gauge
boson must be massive, otherwise it would have been di-
rectly produced in weak decays. GF is replaced by gauge
boson propagation 21/2ifg2i /8(k

2 − M2
G) with the gauge

boson mass MG and, in contrast to the dimensionless cou-
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pling constant gi and the isospin factor if , has the dimen-
sion of inverse energy squared.

The weak interaction amplitude is thus of the form

M = − ifg
2
i

4
Jµ

1
k2 −M2

G

J†
µ =

√
2GFJ

µJ†
µ, (11)

where M is the product of two universal current densities
and if is the isospin factor, which is defined by

if =
1
4
(i†3λ

ai1)(i
†
2λai4), (12)

with the isospin fields, ii with i = 1 ∼ 4, in analogy
with the color factor cf in QCD. The (V − A) current
is conserved but the (V + A) current is not conserved. If
k2 << M2

G, the effective coupling constant becomes

GF√
2

= − ifg
2
i

8(k2 −M2
G)

� g2w
8M2

G

, (13)

with gw = ifgi, and the weak currents interact essentially
at a point. That is, in the low momentum transfer, the
propagation between the currents disappears. The above
equation prompts the idea that weak interactions are weak
not because gi is much smaller than e but because M2

G is
large. Indeed, the two coupling constants are related by
e2 = ifg

2
i = g2i /16 and around the energies of the inter-

mediate vector bosons, weak interactions would become
of a strength comparable to the electroweak interactions.

The Lagrangian density for an SU(2)L×U(1)Y gauge
theory has the same form as the one for QWD as an
SU(3)I gauge theory:

LGWS = −1
2
TrGµνG

µν +
∑
i=1

ψ̄iiγµDµψi

+ Θ
g2w

16π2
TrGµνG̃µν , (14)

where the bare Θ term [13] is a non-perturbative term
added to the perturbative Lagrangian density with
SU(2)L×U(1)Y gauge invariance. The above Lagrangian
density has the same form as the GWS model in the
fermion and gauge boson parts but the Θ term replaced
with the Higgs term in the GWS model. The Θ term is
apparently odd under the P , T , C, and CP operations.
The coupling constant g2w = ifg

2
i = sin2 θWg2i = g2i /4 is

given in terms of the weak coupling constant gi and the
isospin factor if .

Since the covariant derivative is changed from Dµ =
∂µ + igiGµaλ

a/2 in the SU(3)I gauge theory to Dµ =
∂µ+igwWµaλ

a/2+igyBµ in the above Lagrangian density,
the gauge boson mass term is obtained via

�L =
1
2
(Dµφ)2 − 1

2
g2w〈φ〉2WµW

µ

=
g2w
2

(Wµφ)2 − 1
2
g2w〈φ〉2WµW

µ · · · , (15)

where the intermediate vector bosons Wµ and Bµ are de-
fined in the following section and 〈φ〉 is the condensation

of the pseudo-scalar boson. Note that the vacuum energy
due to the scalar boson φ is shifted with respect to its
condensation 〈φ〉; this implies that the condensation sub-
tracts the zero-point energy in the system. The coupling
constant ifg2i and the vacuum expectation value 〈φ〉 for
the condensation of the pseudo-scalar field make the gauge
boson at low energy less massive: the gauge boson mass is
generally defined by

M2
G = M2

H − ifg
2
i 〈φ〉2 = ifg

2
i [φ

2 − 〈φ〉2], (16)

where MH = i
1/2
f giφ indicates the unification gauge bo-

son mass at a phase transition just above the weak phase
transition, φ denotes the real scalar boson and 〈φ〉 stands
for the condensation of the pseudo-scalar boson. Note that
the isospin factor if used in (16) is the symmetric factor
for a gauge boson with even parity and the asymmetric
factor for a gauge boson with odd parity. This process
leads to the breaking of the discrete symmetries P , C,
T , and CP , as is discussed in the following subsection.
The crucial point is that the more massive gauge boson
at higher energies becomes lighter through its conden-
sation at low energies. The Fermi weak interaction con-
stant at low momentum transfer can be, by the expression
(13), related to the gauge boson mass. The mass must be
identical to the inverse of the screening length, that is,
MG = 1/lEW � G

1/2
F . The gauge boson mass MG is re-

lated to the effective vacuum energy density Ve(φ) in (8)
by Ve = M4

G: V0 = M4
H ≈ 1012GeV4, µ2 = −2ifg2iM

2
H ≈

−3 × 106GeV2, λ = i2fg
4
i ≈ 0.01 for MG ≈ 102GeV,

MH ≈ 103GeV, and αi ≈ 0.12. The weak vacuum repre-
sented by massive gauge bosons is quantized by the max-
imum wavevector mode NR ≈ 1030, the total gauge bo-
son number NG = 4πN3

R/3 ≈ 1091, and the gauge boson
number density nG = Λ3EW ≈ 1047cm−3. The Yukawa po-
tential associated with the massive gauge boson is given
by

V (r) =

√
ifg2i
4π

e−MG(r−lEW)

r
, (17)

which shows the short range interaction.

2.5 Breaking of discrete symmetries

The normal vacuum proceeds to the physical vacuum
through the condensation mechanism represented by
DSSB. DSSB by the condensation of scalar fields, which
are postulated as spatially longitudinal components of the
gauge bosons, leads to the breaking of unitarity symme-
try as well as the breaking of discrete symmetries. Elec-
tromagnetic and weak interactions preserve different dis-
crete symmetries. The electromagnetic interaction violates
isospin symmetry but preserves the C, P , and T symme-
tries. The weak interaction separately violates all of them
but is invariant under the combined CPT symmetry.

In the above, it is briefly mentioned that the SU(2)L×
U(1)Y gauge theory for electroweak interactions has its
origin in the SU(3)I gauge theory for weak interactions
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as shown by the triggering of DSSB by the condensation
of the scalar bosons. The condensation is also the origin of
the discrete symmetry violation which is observed in elec-
troweak interactions. The discrete symmetries P , C, and
T are broken down explicitly by the condensation of the
scalar bosons; the product symmetry CPT remains intact
and CP conserves approximately. Since the condensation
of scalar boson is relevant for the vector and axial-vector
currents, the (V − A) doublet current is conserved in the
SU(2)L weak theory, ∂µJ1−γ

5

µ = 0, but the (V +A) singlet
current is not conserved,

∂µJ
1+γ5

µ =
Nfg

2
i

16π2
TrFµνF̃µν , (18)

with the flavor number Nf . The reason for the parity
non-conservation is the scalar boson condensation or the
fermion condensation represented by the condensation
number Nsc in the fermion mass generation as discussed
later. The SU(3)I symmetry is broken by DSSB, in which
the right-handed symmetry is not manifest in the par-
ticle spectrum such as the absence of right-handed neu-
trinos explained by P violation [14]. The Cooper pair-
ing between matter particles violates C symmetry and
the Θ vacuum violates T symmetry explicitly. The inclu-
sion of the third quark generation is represented by the
Kobayashi–Maskawa (KM) matrix [15] which contains P
violation and CP symmetry violation. The assumption of
the KM matrix has a verifiable consequence for the decay
of the K mesons. CP violation observed in the neutral
kaon decay [16] with the probable value Θ � 10−3 indi-
cates T violation because CPT symmetry is conserved.
The electric dipole moment of electrons is observed to be
de = −1.5×10−26 ecm [17], which implies Θ � 10−4 if the
effective dipole length of electrons le � GFme � 10−22 cm
is used. A possible lepton–antilepton asymmetry is sug-
gested as a consequence of C, T , and CP violation during
the DSSB of the SU(3)I symmetry to the SU(2)L×U(1)Y
symmetry: the electron asymmetry δe � 10−7 [18,19] is
suggested as a consequence of the U(1)Y gauge theory.
The lepton number is not conserved above the weak scale,
but the lepton number is conserved below the weak scale
as illustrated by the U(1)Y gauge theory in the weak in-
teractions.

The DSSB of gauge symmetry and chiral symmetry
induces the (V + A) current anomaly represented by the
value Θ ≈ 10−4 at the weak scale. This implies the reduc-
tion of zero modes through the scalar boson condensation.
The Θ vacuum as the physical vacuum is achieved from
the normal vacuum, which possesses a larger symmetry
group than the physical vacuum. The instanton mech-
anism, vacuum tunnelling, is expected in the Euclidean
spacetime. The Θ vacuum term represents the surface
term since it is a total derivative and decreases as the
system expands. The condensation of vacuum decreases
the mass of gauge boson, which causes the expansion of
the system during a phase transition: this is the source of
the exponential inflation as expected by the Higgs mech-
anism.

Photons as NG bosons in DSSB play the role of mass-
less gauge bosons responsible for the U(1)e gauge theory.
Photons are generated as massless gauge bosons from the
weak interactions by DSSB whereas gauge bosons as in-
termediate vector bosons are generated as massive gauge
bosons by DSSB. Photons mediate the Coulomb interac-
tion in the static limit as a result of the symmetry breaking
of the SU(2)L×U(1)Y to U(1)e gauge symmetry. Details
of photon dynamics generation are described in the fol-
lowing section.

3 Generation of electroweak interactions

In the previous section, the common features in DSSB are
addressed, and in this section the precise generation of
the GWS model from QWD is more in particular focused
on and a resolution for problems of the GWS model is
suggested.

The generation of the GWS model by SU(2)L×U(1)Y
→ U(1)e electroweak interactions [1] from QWD as an
SU(3)I gauge theory will now be considered. Spatially lon-
gitudinal components of the gauge bosons parameterized
by scalar fields play the role of Higgs bosons in the elec-
troweak interactions, so that the GWS model, SU(2)L ×
U(1)Y gauge theory, dynamically results from QWD be-
ing an SU(3)I gauge theory. QWD, an SU(3)I gauge the-
ory, generates the electroweak theory, an SU(2)L×U(1)Y
gauge theory, through the condensation of the scalar field.
The condensation of the scalar boson also produces DSSB
yielding the U(1)e gauge symmetry as expected by the
Higgs mechanism of the electroweak interactions. The co-
variant derivative Dµ = ∂µ + igiGµaλ

a/2 of the SU(3)I
gauge theory becomes Dµ = ∂µ + igwWµaλ

a/2 + igyBµ

of the SU(2)L × U(1)Y gauge theory. The weak coupling
constant gi is the unification of the electroweak charge gw
and the hypercharge gy at the weak scale.

There are several supporting clues for the generation
of the electroweak interactions being an SU(2)L × U(1)Y
gauge theory from the weak interactions as an SU(3)I
gauge theory: parity violation, the Fermi weak coupling
constant, the Weinberg angle, three generations as dou-
blets of leptons and quarks, the Cabbibo angle, and the
weak coupling constant gw. Since scalar field generators do
commute with some octet gauge bosons, massive gauge
bosons reduce their masses through the condensation of
pseudo-scalar bosons. This is exactly as expected from
electroweak interactions of the SU(2)L × U(1)Y gauge
symmetry since three intermediate vector bosons, W±
and Z (or W 3), associated with the generators λ1 ∼ λ3,
are massive and the photon is massless. Through the con-
densation of pseudo-scalar bosons, DSSB from SU(2)L ×
U(1)Y to U(1)e is accomplished. The weak gauge bosons
G4 ∼ G7 with isospin two are heavier than the weak
gauge bosons G1 ∼ G3 with isospin one and their contri-
bution almost disappears during the phase transition of
SU(3)I to SU(2)L × U(1)Y symmetry: the detailed con-
cept of isospin will be discussed on treating intrinsic quan-
tum numbers. During DSSB, parity violation and charge
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conjugation violation are maximal due to the condensa-
tion of pseudo-scalar fields. The linear combination of the
diagonal isospin octet generators in two octets of triplet
isospin combinations generates the three families of an
isospin doublet in leptons and quarks. The mass gener-
ation scheme for fermions is suggested in terms of the
DSSB of chiral symmetry without introducing new input
parameters, unlike the GWS model. In this scheme, the
SU(2)L × U(1)Y symmetry and the U(1)e symmetry us-
ing the symmetric isospin factors, isf = (izf , i

w
f , i

y
f , c

e
f ) =

(1/3, 1/4, 1/12, 1/16), are applied to the typical electro-
weak interactions.

The conclusive clues are presented in the following:
the Fermi weak coupling constant, the Weinberg angle
and neutral currents, the three generations of leptons and
quarks, the electroweak coupling constants, and the elec-
troweak flavor mixing angle for quarks.

3.1 Fermi weak coupling constant

As described by the previous section, the electroweak in-
teraction amplitude takes the form of

M = −g2w
2
Jµ

1
k2 −M2

W

J†
µ =

4√
2
GFJ

µJ†
µ, (19)

where the Fermi weak coupling constant

GF√
2

= − g2w
8(k2 −M2

W )
� g2w

8M2
W

(20)

has the dimension of inverse energy squared. The isospin
factor if = 1

4 (i
†
3λ

ai1)(i
†
2λai4) is defined in terms of the

isospin field i. Note that (20) is exactly identical to (13),
since gz = ifgi = gi/3, gw = gz cos θW, M2

G = M2
W /if ,

andMZ = MW / cos θW: the isospin factor if = 1/3 for the
symmetric sextet configuration is discussed in the follow-
ing subsections. The gauge boson mass MG is connected
with the electroweak cutoff scale ΛEW.

3.2 Weinberg angle and neutral current

Another clue for the generation of the SU(2)L × U(1)Y
to the SU(3)I symmetry comes from the Weinberg angle
θW which represents the mixing of G3 and G8. The ex-
perimental value sin2 θW ≈ 0.234 [20] is very close to the
theoretical value sin2 θW = g2y/(g

2
w+g2y) = 0.25 if the cou-

pling constant gw for the SU(2)L group and the coupling
constant gy for the U(1)Y group are determined from the
SU(3)I group; the theoretical value of tan θW = gy/gw
is just the ratio, 1/31/2, between the gauge fields G3 and
G8 from the SU(3)I gauge symmetry. The neutral weak
coupling constant gz = (g2w + g2y)

1/2 is defined and ac-
cordingly sin θW = gy/gz and cos θW = gw/gz; gw and
gy are related by a number known as the isospin factor
of the coupling constants. Notice that the experimental
value 0.236 is much closer to the theoretical prediction

sin2 θW = 0.25 of this scheme than sin2 θW = 3/8 of the
SU(5) gauge theory [3] at the tree level.

The Weinberg angle is closely related to massive gauge
boson and massless photon generation. The gauge mass
terms come from (16), evaluated at the shifted vacuum
φ

′2 = φ2 − 〈φ〉2 with scalar boson φ and condensed scalar
boson 〈φ〉. The relevant terms after the phase transition of
the SU(3)I symmetry to the SU(2)L × U(1)Y symmetry
are

φ
′2(giGa

µλ
a)(giGµbλb) (21)

→ φ
′2[g2w(G

1
µ)
2 + g2w(G

2
µ)
2 + (−gwG3µ + gyG

8
µ)
2].

Recall that G1µ ∼ G3µ and G8µ are respectively equivalent
to W 1

µ ∼ W 3
µ and Bµ in the GWS electroweak model.

There are massive bosons

W±
µ =

1√
2
(G1µ ∓ iG2µ), (22)

Z0µ = cos θWG3µ − sin θWG8µ, (23)

where their masses are

M2
W = g2w(φ

2 − 〈φ〉2),
M2

Z = M2
W / cos2 θW = ifg

2
i [φ

2 − 〈φ〉2]
=

1
3
g2i [φ

2 − 〈φ〉2],

with MH = ifg
2
i φ
2 respectively. The fourth vector identi-

fied as the photon, orthogonal to Z0, remains massless:

Aµ = sin θWG3µ + cos θWG8µ, (24)

with the mass MA = 0. Photons play the role of mass-
less gauge bosons responsible for the U(1)e gauge theory.
They are understood as NG bosons during DSSB [9]. Two
physical neutral gauge fields Zµ and Aµ are orthogonal
combinations of the gauge fields G3µ and G8µ with the mix-
ing angle θW. The mixing represents the mixing of gauge
bosons with the 0 third component of isospin, G3µ with
isospin 1 and G8µ with isospin 2. The electromagnetic cur-
rent is the combination of the two neutral currents J3µ and
jyµ. The generators of this scheme satisfy Q̂ = Î3+ Ŷ /2 as
shown in (5) so that

jeµ = J3µ + jyµ/2. (25)

The hypercharge operator Ŷ = B̂− L̂ is used and applied
in the subsection of the three generations of leptons and
quarks. The interaction in the neutral current sector can
be given by

−igwJ3µG
3µ − igyjyµG

8µ/2

= −iejeµA
µ − igz[J3µ − sin2 θWjeµ]Z

µ, (26)

where the relation

e = gw sin θW = gy cos θW = gz cos θW sin θW (27)
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Table 1. Weak isospin and hypercharge quantum numbers of
leptons and quarks

Leptons I I3 Y Q

νe 1/2 1/2 −1 0
eL 1/2 −1/2 −1 −1
eR 0 0 −2 −1

Quarks I I3 Y Q

uL 1/2 1/2 1/3 2/3
dL 1/2 −1/2 1/3 −1/3
uR 0 0 4/3 2/3
dR 0 0 −2/3 −1/3

is used. The Weinberg angle in the neutral current inter-
action of (26) is further addressed by

−i
gw

cos θW
jNCµ Zµ

= −igzψ̄γµ
[
1
2
(1 − γ5)I3 − sin2 θWQ

]
ψZµ

= −igzψ̄γµ
1
2
(gV − gAγ

5)ψZµ, (28)

where jeµ is the electric current density. The vector and
axial-vector couplings, gV and gA, are determined by

gV = I3 − 2 sin2 θWQ, gA = I3. (29)

Experimental values for the vector and axial-vector cou-
pling from neutrino-electron data [21] are reasonably in
good agreement with the isospin quantum numbers shown
in Table 1, which is obtained by the GWS model, when the
Weinberg angle is sin θW = 1/2; for the electron, the ex-
perimental values are gA = −0.52 and gV = 0.06, and the
theoretical values are gA = −0.5 and gV = 0.

3.3 Electroweak coupling constants

During the phase transition from the SU(3)I gauge theory
to the SU(2)L×U(1)Y gauge theory, two fermion interac-
tions with triplet isospins are represented by 3⊗3 = 3̄⊕6 in
group theoretical language. Similarly to the strong interac-
tions, the triplet isospin charges (A,B,C) are introduced.
For two fermions, a triplet with asymmetric combinations
becomes

(AB −BA)/
√
2, (BC − CB)/

√
2, (CA−AC)/

√
2,

(30)
and a sextet of symmetric combinations becomes

AA, BB, CC,

(AB +BA)/
√
2, (BC + CB)/

√
2, (CA+AC)/

√
2.
(31)

The isospin factor if = −2/3 for the triplet configuration
is obtained for the fermion–fermion interactions. Since six

pairs with the same isospin factor are, together with the
normalization factor 1/6, taken into account, the isospin
factor is if = 1/3. The completely symmetric sextet con-
figuration is related to the three generations of leptons and
quarks; sextet members might lead to three generations
of the SU(2)L isospin symmetry after the electromagnetic
phase transition: SU(2)L×U(1)Y → U(1)e. The involved
gauge bosons in the SU(2)L × U(1)Y gauge theory are
G1 ∼ G3 and G8. Note that the coupling constant for the
charge neutral current is αz = ifαi = αi/3. Leptons are
asymmetric in spin and isospin states while quarks are
symmetric in spin and isospin states.

This scheme explains the weak coupling constant con-
sistent with experimental values through the data of muon
decay [5]. The observed muon lifetime and mass give a
Fermi weak coupling

GF =
√
2
8

(
gw
MW

)2
= 1.166 × 10−5GeV−2. (32)

The corresponding value of the weak coupling constant gw
is given by gw ≈ 0.61 and the weak fine structure constant
becomes

αw = g2w/4π ≈ 0.03. (33)

On the other hand, since αe = 1/137, αe = αw sin2 θW,
αz cos2 θW = αw, αz = ifαi, and sin2 θW = 1/4, the pre-
diction of αz = g2z/4π = 0.04 and αi = g2i /4π � 0.12
at the weak scale is obtained. In summary, the coupling
constant hierarchy in the weak interactions is αi, αz =
αi/3 � 0.04, αw = αi/4 � 0.03, αy = αi/12 � 0.01, and
αe = αi/16 � 1/133 at the weak scale. The isospin factor
if = 1/4 for αw = αi/4 represents the coupling between
parallel SU(2) isospins.

3.4 Three generations of leptons and quarks:
Weak isospin and charge quantum number

This scheme exhibits three generations of leptons and
quarks holding family symmetry, which is one of the fun-
damental questions in particle physics. The left-handed
lepton doublets are

(
νe
e

)
L
,

(
νµ
µ

)
L
,

(
ντ
τ

)
L

(34)

and the right-handed lepton singlets are eR, µR, τR. The
left-handed quark doublets are

(
u

d

)
L
,

(
c

s

)
L
,

(
t

b

)
L

(35)

and the right-handed quark singlets are uR or dR, cR or
sR, and tR or bR. The detailed scenarios of the isospin and
charge quantum numbers are as follows.

The SU(3)I symmetry represents, in group theoreti-
cal language, 3 ⊗ 3 ⊗ 3 = 10 ⊕ 8 ⊕ 8 ⊕ 1 for three fermion
combinations with triplet isospins. When triplet isospin
charges A,B,C are introduced, the two octets are par-
tially asymmetric under the interchange of isospin. One
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octet is asymmetric under the interchange of the first and
second isospins, (A,B), and the other octet is asymmet-
ric under the interchange of the first and third isospins,
(A,C), or the second and third isospins, (B,C). The lin-
ear combination of two octets yields the fermion families
with symmetric isospin configurations. Three families of
leptons are created as the linear combination of diago-
nal isospin components of three SU(2) subgroups, I, U ,
and V isospins, in two octets. The phase transition of the
SU(3)I → SU(2)L × U(1)Y → U(1)e gauge theory pro-
vides us with the electric charge quantization Q̂ = Î3+Ŷ /2
with Ŷ = B̂ − L̂. For example, the linear combination of
generators λa3 and λs3 is for the left-handed lepton dou-
blet, and the linear combination of the generators λa8 and
λs3 is for the right-handed lepton singlet, where the super-
scripts a and s represent the asymmetric and symmetric
states under interchanging the first two particles, respec-
tively. The generators are dual in parity:

λa3/2 = diag(1,−1, 0)/2, λs3/2 = diag(1, 1, 0)/2,

λa8/2
√
3 = diag(1, 1,−2)/6, λs8/2

√
3 = diag(1, 1, 2)/6.

Note that the rotation by the Weinberg angle is included
in the coefficients. Three generations of quarks are also
created as a linear combination of the diagonal isospin
components of the I, U and V subgroups: for instance,
the linear combination of λa3 and λs8 for the left-handed
quark doublet and the linear combination of λa8 and λs8
for the right-handed quark singlet. The mass difference
among the three families depends on the condensation of
the pseudo-scalar bosons. The SU(3)I gauge symmetry
is broken as a result of the condensation of the pseudo-
scalar bosons. The λs3 is relevant for the lepton families
with I3 = 0 and Y = −L = −1, the λs8 is relevant for
the quark families with I3 = 0 and Y = B = 1/3, the
λa3 is relevant for the left-handed doublets I3 = ±1/2
and Y = 0, and the λa8 is relevant for the right-handed
singlets with I3 = 0 and Y = −1. Note that the states
of λa3 and λa8 determine the distinction between the left-
and right-handed particles; they are closely related to the
axial-vector charges since they hold odd parity while λs3
and λs8 are related to the vector charges since they hold
even parity. A summary for the generation of leptons and
quarks is as follows. The linear combination of λa3 and λs3
generates the left-handed lepton doublets with I3 = ±1/2
and Y = −L = −1: diag(1,−1, 0)/2 − diag(1, 1, 0)/2 =
diag(0,−1, 0). The linear combination of λa3 and λs8 gen-
erates the left-handed quark doublets with I3 = ±1/2
and Y = B = 1/3: diag(1,−1, 0)/2 + diag(1, 1, 2)/6 =
diag(2,−1, 1)/3. The linear combination of λa8 and λs3 gen-
erates the right-handed lepton singlets with I3 = 0 and
Y = −2: −diag(1, 1,−2)/6 − diag(1, 1, 0)/2 = diag(−2,
−2, 1)/3. The linear combination of λa8 and λs8 generates
the right-handed quark singlets with I3 = 0 and Y =
4/3 or with I3 = 0 and Y = −2/3: −diag(1, 1,−2)/6 +
diag(1, 1, 2)/6 = diag(0, 0, 2)/3 or −diag(1, 1,−2)/6 −
diag(1, 1, 2)/6 = diag(−1,−1, 0)/3, where the element
−1/3 denotes the down quark and the element 2/3 de-
notes the up quark. Weak isospin and electric charge quan-
tum numbers of leptons and quarks are summarized in Ta-

ble 1. This scheme illustrates the left–right symmetry be-
fore DSSB; it is similar to the composite model [22] and
the left–right symmetric model of the weak interactions
[23].

In other words, each elementary fermion such as the
lepton or quark possesses color and isospin degrees of free-
dom in addition to spin degrees of freedom. The lepton is
postulated as a color singlet state while the quark is postu-
lated as a color triplet state so that it may interact through
the color charge exchange. All leptons and quarks consist
of a lepton octet and a quark octet, in which each family
explicitly possesses three generations of isospin doublets
with one electric charge unit difference: this is very much
analogous to the celebrated eight-fold way in hadron spec-
tra with quark flavor symmetry.

3.5 Electroweak flavor mixing angle for quarks

Further clues are the mixing angles of the KM matrix [15]
including the Cabbibo angle [24]. The mixing between the
d and s quarks in the decay of the vector boson W+ is
represented by the Cabbibo angle which indicates mixing
among the quark families. The mixing of the d and s quark
is observed by comparing ∆S = 1 and ∆S = 0 decays:

Γ (K+ → µ+ + νµ)
Γ (π+ → µ+ + νµ)

∼ sin2 θC,

Γ (K+ → π0 + e+ + νµ)
Γ (π+ → π0 + e+ + νµ)

∼ sin2 θC. (36)

The mixing between the quarks is extended to the third
generation of quarks by the KM matrix which includes
three angles and one CP phase angle [15,25]. These mix-
ing angles and this phase angle show the possibility that
quark interactions are generated from both the weak in-
teraction of the SU(3)I gauge symmetry and the strong
interaction of the SU(3)C gauge symmetry.

Recall that electric charges for the left-handed quarks
are obtained by the linear combination of generators λa3
and λs8; the electric charge matrix is given by diag(2/3,
−1/3, 1/3). The existence of the third component in
QWD, which has a quantum number Y = 2/3, which is
unpredictable from the GWS model, indicates the SU(3)I
flavor symmetry and is related to the mixing of W+ =
G1+i2 and G4+i5 gauge fields for positively charged gauge
fields; for instance, the total current becomes jµ = cos θC
j1+i2µ +sin θCj4+i5µ where the Cabbibo angle tan2 θC is de-
termined by the mass squared ratio of the two gauge fields
G1+i2 and G4+i5: MW = M1+i2

G and M4+i5
G � 2MW .

The Cabbibo angle sin θC = (M1+i2
G /M4+i5

G )2 � 1/4 is
thus predicted and is very close to the experimental value
sin θC = 0.231. This is also supported by sin2 θC being
connected with the mass ratio ≈ 1/20 of the d and s
quarks [26,27]. The Cabbibo angle thus indicates the mix-
ing between the SU(2) subgroups I and U . This can be
considered to be conclusive evidence of the massive gauge
bosons G4 and G5 with the masses 2MW in addition to
the three intermediate vector bosons.
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The other two mixing angles in the KM matrix respec-
tively represent the mixing between the SU(2) subgroups
I and V and the mixing between the subgroups U and
V . Since the other mixing angles are experimentally close
to 0, the masses of the gauge bosons G6 and G7 must be
heavier than those of G1 and G2. Note that weak CP vio-
lation from the decay of the neutral kaon is relevant for the
Θ ≤ 10−3, and the absence of right-handed neutrinos is a
direct consequence of the non-conservation of the (V +A)
current under the breaking of the discrete symmetries.

4 Grand unification of strong
and electroweak interactions

In this section, the grand unification of QWD and QCD is
clarified in terms of the experimental strong and weak cou-
pling constants. A coupling constant hierarchy for weak
interactions is suggested in analogy with the coupling con-
stant hierarchy for the strong interactions.

A grand unified groupH contains the SU(3)I group for
the weak interactions and the SU(3)C group for the strong
interactions [2,6,7] as subgroups: H ⊃ SU(3)I × SU(3)C .
A certain grand unification group H breaks down to the
SU(3)I × SU(3)C group at the grand unification scale
around 103GeV, which is much lower than the grand unifi-
cation scale 1015GeV of the GUT [3] being the grand uni-
fication of the standard model SU(3)C ×SU(2)L×U(1)Y .
This scheme might provide the resolution to the hierar-
chy problem and the analogy between the SU(3)I and
SU(3)C symmetries. In the following, grand unification of
the weak and strong interactions and the comparison of
effective coupling constants are discussed.

4.1 Grand unification of quantum weakdynamics
and quantum chromodynamics

There is conclusive evidence for the proposal that QCD
for the strong force is unified with QWD for the weak
force at the grand unification scale around 103GeV. The
fine structure constant αs for the strong interactions is
measured by numerous experiments [4]:

αs(MZ) � 0.12, (37)

which has been evaluated at the momentum of the Z bo-
son mass q = MZ . The fine structure constant αw for the
SU(2)L weak interaction is given by the data of muon
decay [5]:

αw(MW ) � 0.03 (38)

at the momentum of the W boson mass q = MW . The
two empirical coupling constants (37) and (38) provide the
grand unification scale around 103GeV, where the strong
coupling constant is the same as the weak coupling con-
stant: αh = αs = αi. For the SU(3)I symmetry, a sym-
metric sextet configuration in isospin–isospin interactions
has the fine structure constant αz = ifαi = αi/3, which
is the coupling constant for the gauge boson Z. Since

Table 2. Relations between conservation laws and gauge the-
ories

Force Conservation law Gauge theory

Electromagnetic Electron U(1)e
Weak Lepton (or B − L) U(1)Y
Weak V − A SU(2)L × U(1)Y
Weak isotope (isospin) SU(3)I

αz = αw/ cos2 θW and sin2 θW = 1/4, the fine structure
constant for the W boson is αw = αi/4; the fine structure
constant for QWD, αi(MZ) � 0.12, is thus obtained. This
leads to the fine structure constant for the electromag-
netic interactions αe = αw sin2 θW = αi/16 = 1/133. In
summary, the fine structure constants are given by αh =
αs = αi � 0.12, αz = αi/3 � 0.04, αw = αi/4 � 0.03,
αy = αi/12 � 0.01, and αe = αi/16 � 1/133 around the
weak scale 102GeV. In addition, the electromagnetic in-
teractions give the fine structure constant 4αe/9 = αi/36
for the up quarks and αe/9 = αi/144 for the down quarks.
This explains the group chains H ⊃ SU(3)I×SU(3)C and
SU(3)I ⊃ SU(2)L × U(1)Y ⊃ U(1)e.

After the phase transition of the group H, the groups
SU(3)I and SU(3)C preserve the analogous properties.
The isospin coupling constant is given by gi and the Wein-
berg weak mixing angle is given by sin2 θW = 1/4. As
the energy scale decreases, the SU(3)I group for isospin
interactions breaks down to the SU(2)L × U(1)Y group
for the electroweak interactions at the electroweak scale.
The electroweak coupling constants are, in summary, αz =
izfαi = αi/3 � 0.04, αw = iwf αi = αi/4 � 0.03, αy =
iyfαi = αi/12 � 0.01, and αe = iefαi = αi/16 � 1/133
for the symmetric isospin interactions at the weak scale
and −2αi/3, −αi/2, −αi/6, and −αi/8 for the asymmet-
ric isospin interactions: iwf = sin2 θW and ief = sin4 θW.
The isospin factors introduced are isf = (izf , i

w
f , i

y
f , i

e
f ) =

(cbf , c
n
f , c

z
f , c

f
f ) = (1/3, 1/4, 1/12, 1/16) for symmetric in-

teractions and iaf = (−2/3,−1/2,−1/6,−1/8) for asym-
metric interactions. The symmetric charge factors reflect
an intrinsic even parity with repulsive force while the
asymmetric charge factors reflect an intrinsic odd parity
with attractive force; this suggests electromagnetic dual-
ity. The symmetric charge factors reflect an intrinsic even
parity with repulsive force while the asymmetric charge
factors reflect an intrinsic odd parity with attractive force.
As a consequence of gauge theories, conservation laws are
expected. Table 2 shows relations between conservation
laws and gauge theories in the weak interactions. However,
there is a possibility that not the separate conservation of
the baryon number and the lepton number hold, but the
combined conservation of (B−L) number conservation in
the energies above 102GeV.

4.2 Coupling constants for fundamental forces

The new grand unification energy 103GeV rather than the
conventional energy 1015GeV is obtained so that the hi-
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erarchy problem seems to be resolved. The unification at
the order of a TeV energy is consistent with a recent GUT
[29]. Dynamical symmetry breaking is adopted instead of
the Higgs mechanism; the condensation of pseudo-scalar
bosons reduces the mass of the gauge boson and it be-
comes the source of the system inflation.

QWD has an asymptotic freedom in the weak cou-
pling constant gi just as the notable characteristic of QCD
is the asymptotic freedom due to anti-screening at short
distance as a non-Abelian gauge theory according to the
renormalization group study [30]. Massive gauge bosons at
the grand unification scale produce massive intermediate
vector bosons and massive gluons at weak and strong in-
teraction energies respectively. The effective grand unified
coupling becomes

GH√
2

= − g2h
8(k2 −M2

G)
� g2h

8M2
G

≈ 10−4GeV−2, (39)

where the coupling constant gh holds for the grand uni-
fied gauge group H: the effective coupling constant chain
becomes GH ⊃ GF × GR with the effective strong cou-
pling constant GR/21/2 = g2s/8M

2
G ≈ 10GeV−2. Note

that GH is close to GF or it is slightly less than GF, since
αh ∼ αi ∼ αs at the energy scale 103GeV. The mass of
the gauge boson at the grand unification scale is expressed
by M2

G = M2
H at a slightly higher phase transition energy

above the weak scale. The gauge boson decreases its mass
as the condensation increases when the energy scale de-
creases. At T � 102GeV, the gauge boson number density
is nG = M3

G � 106GeV3 � 1047 cm−3, the vacuum energy
density is V0 = M4

G � 108GeV4 � 1025 gcm−3, and the
total gauge boson number is NG � 1091, which is a con-
served good quantum number.

Of the four fundamental forces in nature, three forces,
the electromagnetic, strong, and weak forces, are unified at
the grand unification scale. Strong interactions are limited
in range to about 10−13 cm and are insignificant even at
the scale of the atom 10−8 cm, but play an important role
in binding the nucleus. Weak interactions with an even
shorter scale (≤ 10−15 cm) do play an important role in
weak decay processes. The strengths of the four forces are
roughly in orders of magnitude 10, 10−2, 10−5, and 10−41
for the strong, electromagnetic, weak, and gravitational
forces, respectively. The difference in strength is more than
a factor of GR/GN ≈ 1039 for the strong and gravita-
tional interactions. The ratio of the electroweak and grav-
itational forces is also obtained by GF/GN ≈ 1033.

The gauge boson possesses the isospin SU(3)I and
color SU(3)C symmetries below the grand unification en-
ergy. The gauge boson with the energy higher than its
mass thus effectively interacts with the Coulomb potential
outside the grand unification scale while the gauge boson
with the energy lower than its mass essentially interacts
with the Yukawa potential within the grand unification or
weak scale. At the grand unification scale, the gauge bo-
son has a mass so that the interaction range is limited to
the grand unification scale. However, as energy goes down
the gauge boson loses mass because of the pseudo-scalar
boson condensation. Isospin interactions are represented

by both the Coulomb potential and the Yukawa poten-
tial with a Fermi weak constant GF ≈ 10−5GeV−2. This
implies that the isospin field with the Yukawa interaction
does not propagate over the long range due to the heavy
mass; recall that the (V − A) current in the weak theory
has a point-like interaction with a Fermi coupling con-
stant GF. At the electroweak phase transition, the isospin
interaction range for massive gauge bosons is restricted to
the weak scale but the electromagnetic interaction range
for the massless photons is infinite. Gauge boson masses
change their values at the different energy scale due to the
scalar boson condensation. For example, MG ≈ 102GeV
at the grand unification scale or at the electroweak phase
transition scale and MG ≈ 0.1GeV at the QCD cutoff
scale. The Fermi coupling constant GF thus denotes the
effective coupling for the Yukawa potential of the isospin
field at the electroweak scale. Energy scales for the phase
transitions of the fundamental forces are accordingly as
follows: the grand unification corresponds to E ≈ ΛH , the
weak force to E ≈ ΛW with the weak scale ΛW ≈ 102GeV,
and the strong force to E ≈ ΛQCD with the strong mass
scale ΛQCD ≈ 0.1GeV.

5 Quark and lepton mass generation

The DSSB mechanism suggests quark and lepton mass
generation, which is the outstanding problem in the GWS
model using the Higgs mechanism. In this scheme, quarks
and leptons are not treated as fundamental elementary
particles but as composite particles. The duality prop-
erty before phase transition may be broken by DSSB after
phase transition.

Ordinary mass terms in the Lagrangian are not al-
lowed, because the left- and right-handed components of
the various fermion fields have different quantum numbers,
and so simple mass terms violate gauge invariance. To gen-
erate masses for the quarks and leptons, the DSSB mecha-
nism of gauge symmetry and chiral symmetry is required.
The condensation of pseudo-scalar bosons and fermion
pairs is connected with the lepton and quark masses in the
course of parity and charge conjugation violation, which
breaks chiral symmetry; the SU(2)L doublet (V −A) cur-
rent is conserved but the SU(2)R (or U(1)R) singlet (V +
A) current is not conserved. The massless gauge bosons
in the DSSB of gauge symmetry and chiral symmetry are
photons.

The dual Meissner effect, constituent fermions, fine
and hyperfine structure, and quark and lepton mass gen-
eration are addressed in the following.

5.1 Dual Meissner effect

The quark or lepton formation is the consequence of the
isospin–isospin interaction due to the dual Meissner effect,
in which the isotope electric monopole and the isotope
magnetic dipole (isospin) are confined inside the quark
(or lepton), while the isotope magnetic monopole and the
isotope electric dipole are confined in the vacuum. The
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difference number of right- and left-handed (singlet and
doublet) fermions Nsd = Nss − Nsc, the number of left-
handed constituent particles Nss, and the right-handed
condensation number Nsc are introduced.

During the DSSB of gauge symmetry and chiral sym-
metry, the dual Meissner effect of the isospin electric field
in the relativistic case can be described by

∂µ∂
µGµ = −M2

GG
µ, (40)

where the right-hand side is the screening current, jµsc =
−M2

GG
µ. Recall that the masses of the gauge bosons are

expressed by M2
G = M2

H − ifg
2
i 〈φ〉2 = ifg

2
i [φ

2 − 〈φ〉2]
where 〈φ〉 represents the condensation of the pseudo-scalar
boson and if denotes the isospin factor. The screening of
the isospin field intensity in the isospin superconducting
state is given by

∇2Ei = M2
GEi, (41)

where G is the isospin electric field Ei excluded in the
vacuum by Ei = Ei0e−MGr. Note the difference between
the isospin dielectric due to the isospin electric field Ei

and the isospin diamagnetism due to the isospin magnetic
field Bi. The mechanism is by analogy connected with
the Faraday induction law which opposes the change in
the isospin electric flux, rather than the isospin magnetic
flux according to Lenz’s law.

The gauge boson mass is related to the fermion mass
mf :

MG =
(
g2im|ψ(0)|2

mf

)1/2
� √

πmf ifαi
√
Nsd, (42)

which is obtained by the analogy of electric superconduc-
tivity [31], M2 = q2|ψ(0)|2/m: q = −2e and m = 2me

are replaced by gim and mf . The isospin magnetic cou-
pling constant, gim = 2πn/i1/2f gi = 2πN1/2

sd /i
1/2
f gi by the

Dirac quantization condition, is used. |ψ(0)|2 denotes the
particle probability density and Nsd denotes the difference
number of right- and left-handed fermions in intrinsic two-
space dimensions.

A fermion mass term in the Dirac Lagrangian has the
form mf ψ̄ψ = mf (ψ̄RψL + ψ̄LψR), where the mass term
is equivalent to a helicity flip. Left-handed fermions are
put into SU(2) doublets and the right-handed ones into
SU(2) singlets. The coherent fermion system is effectively
a collection of the Cooper pairs of left- and right-handed
fermions, so that the macroscopic occupancy of a single
quantum state could occur; all the pairs have the same
center of mass momentum known as the coherent state.
The fermion mass generation mechanism is the dual pair-
ing mechanism of the constituent fermions, which makes
boson-like particles of paired fermions. According to the
electric–magnetic duality [28,32,33], the isospin electric
flux is quantized by ΦE =

∮
Ei · dA = i

1/2
f gi in the mat-

ter space while the isospin magnetic flux is quantized by
ΦB =

∮
Bi · dA = gim with the isospin magnetic coupling

constant gim in the vacuum space: the Dirac quantization
condition √

ifgigim = 2πn = 2π
√
Nsd (43)

is satisfied with the connection between n and Nsd. In
the matter space, it is the pairing mechanism of isospin
electric monopoles while in the vacuum space, it is the
pairing mechanism of isospin magnetic monopoles accord-
ing to the duality between electricity and magnetism [28,
32,33]: isospin electric monopole pairing and isospin mag-
netic monopole condensation. In the dual pairing mecha-
nism, the discrete symmetries P , C, T , and CP are dy-
namically broken. The isospin electric monopole, isospin
magnetic dipole, and isospin electric quadrupole remain
in the matter space, but the isospin magnetic monopole,
isospin electric dipole, and isospin magnetic quadrupole
condense in the vacuum space as a consequence of P vio-
lation. Antimatter particles condense in the vacuum space
while matter particles remain in the matter space as a con-
sequence of C violation: the matter–antimatter asymme-
try. The lepton–antilepton asymmetry is also supporting
evidence of the discrete symmetry breaking. The electric
dipole moment of the neutron and the decay of the neutral
kaon decay are the typical examples for T or CP violation.

Normal fermions with the quantum number Nsd inter-
act with each other with the isospin symmetric configura-
tions, csf = (cbf , c

n
f , c

z
f , c

f
f ) = (1/3, 1/4, 1/12, 1/16), while

condensed fermions with the condensation number Nsc

interact with each other with isospin asymmetric configu-
rations, caf = (−2/3,−1/2,−1/6,−1/8). Comparing (42)

with (16), it is realized that MH = π1/2mf ifαiN
1/2
ss and

〈φ〉 = (m2f ifαiNsc/4)1/2. Note that (42) is analogous to
the fermion mass mf = 〈F̄F 〉/2µ2 with the condensation
of the technifermion F and the extended technicolor scale
µ in the extended technicolor model [34]. It is instructive
thatmf = λfMG, where λf � 1/(π1/2ifαiN

1/2
sd ), depends

on the number Nsd. The intrinsic quantum number of a
constituent fermion is thus important in determining the
fermion masses. For example, the u quark with the cur-
rent quark mass mu ≈ 5MeV has Nu

sd = 1010 and elec-
tron with the mass me � 0.5MeV has Ne

sd � 1012 for
the effective coupling constant GF = 10−5GeV−2 and the
gauge boson mass MG � 102GeV: me/mu � 1/10 and
Ne
sd/N

u
sd � 1/102. Each quark or lepton holds a different

intrinsic quantum number as a distinct state.

5.2 Constituent fermions

Leptons and quarks are postulated to be composite parti-
cles consisting of constituent fermions as a result of U(1)Y
gauge theory. This concept is similar to the concept of
technicolors or preons [10,23] as more fundamental parti-
cles forming quarks and leptons.

The relation between the gauge boson mass and the
free fermion mass, which is confirmed in (42), is given by
MH = π1/2mf ifαiN

1/2
ss or

MG =
√
πmf ifαi

√
Nsd, (44)

where mf is the mass of a fermion, Nsd is the difference
number of left- and right-handed fermions in intrinsic two-
space dimensions, and Nss is the number of left-handed
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fermions. The fermion mass formed as a result of the dual
pairing mechanism in the above is composed of constituent
particles:

mf =
N∑
i

mi, (45)

where mi is the constituent particle mass. In the above,
N depends on the intrinsic quantum number of the con-
stituent particles: N = N

3/2
sd . For example, N = 1/L with

the lepton number L for a constituent particle in the for-
mation of a lepton.

The difference number of fermions Nsd is the origin of
symmetry violation during DSSB. Fermions with odd par-
ity condense in the vacuum space while fermions with even
parity remain in the matter space; for example, magnetic
monopoles with odd parity are not observed, but electric
monopoles with even parity are observed in the matter
space. Discrete symmetries are violated so as to have a
complex scattering amplitude and the non-conservation
of the right-handed singlet current. This is the main rea-
son for the change of the fermion mass and gauge boson
mass.

5.3 Fine and hyperfine structure

In order to obtain the fermion mass formula for fine and
hyperfine interactions the analogy of QED is non-
relativistically considered to avoid complexity. The fine
interactions become isospin–isospin interactions as a re-
sult of the SU(2)L gauge theory. Hyperfine interactions
consist of spin–spin and colorspin–colorspin interactions.
The colorspin–colorspin interaction is closely related to
the difference between the lepton as a color singlet state
and the quark as a color triplet state.

In QED, the dipole moment has the form expected
for a Dirac point-like fermion: µi = (e/2me)σi where e is
the electric charge of particle, me the particle mass, and
σi its Pauli matrix. The spin–spin interaction due to the
magnetic moment leads to the hyperfine splitting of the
ground state:

�Ehf =
2
3
µi · µj |ψ(0)|2 =

2παe
3

σi · σj
mimj

|ψ(0)|2, (46)

where ψ(0) is the wave function of the two particle system
at the origin (rij = 0) and the spin–spin interaction is
proportional to σi · σj = 4si · sj . The above result can be
taken over to the isospin–isospin interaction as the fine
interaction:

�Ef =
2πg2i
3

τi · τj
mimj

|ψ(0)|2, (47)

where gi is the isospin coupling constant, if = τi · τj is
the isospin factor, and τi = 2i is the Pauli matrix. The
masses mi and mj denote constituent fermion masses for
each lepton or quark as suggested by the fermion mass
formation through the pairing mechanism.

The above result can be taken over to spin–spin and
colorspin–colorspin interactions:

�Ehf =
2πifg2i

3
σi · σj
mimj

|ψ(0)|2 + 2πifg2i
3

ζi · ζj
mimj

|ψ(0)|2,
(48)

where gi is the isospin coupling constant, if is the symmet-
ric isospin factor, and ζi = 2c is the Pauli matrix. The first
term denotes the contribution from the spin–spin interac-
tion and the second term denotes the colorspin–colorspin
interaction. The second term in (48) makes the distinction
between leptons and quarks and causes quark mixing like
the d and s quarks.

5.4 Quark and lepton mass generation

The quark or lepton mass consists of three parts apart
from the dual pairing mechanism: constituent particle
mass, the fine structure energy, and the hyperfine struc-
ture energy.

Combining (45), (47), and (48), the fermion mass for-
mula is thus given by

mf =
∑
i

mi +
2πg2i
3

∑
i>j

τi · τj
mimj

|ψ(0)|2

+
2πifg2i

3

∑
i>j

σi · σj
mimj

|ψ(0)|2

+
2πifg2i

3

∑
i>j

ζi · ζj
mimj

|ψ(0)|2, (49)

where |ψ(0)|2 � (ifmfαi)3 andmi is the mass of each con-
stituent particle. The first term of the right-hand side de-
notes the free constituent particle contribution, the second
term denotes the isospin–isospin contribution, the third
term denotes the spin–spin contribution, and the fourth
term denotes the colorspin–colorspin contribution in the
mass generation mechanism. The fourth term seems to be
the main reason for the mass difference of the lepton as a
color singlet state and the quark as a color triplet state.
The fundamental particles known as leptons and quarks
are postulated to be composite particles with the same
third component of spin ±1/2 and isospin ±1/2 but a dif-
ferent degeneracy number Nsd: Nsd is further discussed in
the following section. It suggests that the fermion mass
generation mechanism is relevant for the (V +A) current
anomaly, which reduces the zero-point energy and triggers
the DSSB of gauge and chiral symmetries.

Although the GWS model holds many attractive fea-
tures, the Higgs sector and the fermion mass sector are
the least satisfactory aspects of the electroweak theory.
The minimal choice of a simple Higgs doublet is sufficient
to generate the masses both of the gauge bosons and of
fermions, but the masses of the fermions are just param-
eters of the theory which are not predicted; their empiri-
cal values must be taken as input parameters. The GWS
model allows the electron to be very light but it cannot
explain why the electron is so light compared with the
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intermediate vector boson. However, this scheme might
express a plausible reason for it if the fermion difference
number Nsd is very large, about 1012 order. QWD hints
at mass generation through the Θ vacuum and the dual
pairing mechanism. QWD produces three generations of
fermion families and gauge bosons for the DSSB of the
gauge group. In this scheme, neutrinos should have masses
as hinted at by [35,36]. QWD as a gauge theory has the fa-
vorable feature of only one input parameter for the weak
coupling constant gi; the dynamics can be regarded as
quantum flavordynamics for fermion generations. Being
anomaly free in perturbative renormalization, which re-
quires equal numbers in quarks and leptons, suggests that
the lepton number excess compared to the baryon number
might be used for the dark matter, which plays an impor-
tant role in the later stages of the evolution of the uni-
verse. The presence of the non-perturbative anomaly, the
Θ vacuum term in (6), does not necessarily spoil renormal-
ization because there is no Ward–Takahashi identity [37]
destroyed by the non-conservation of any local conserved
current with even parity. QWD as the SU(3)I gauge the-
ory suggests the possibility not for the separate conser-
vation of baryon number and lepton number but for the
combined conservation of the (B − L) number in the en-
ergies above 102GeV. The lepton number is however con-
served as a result of the U(1)Y gauge theory below the
weak scale, and the baryon number is conserved as a re-
sult of the U(1)Z gauge theory below the strong scale [6,
7].

6 Θ constant and quantum numbers

The Θ term in the Lagrangian density triggers DSSB and
quantizes space and time. The parameter Θ is constrained
to hold the flat universe condition. The gauge invariance
and boundary condition of spacetime provide the quanti-
zation of the internal space and the external space. The
Θ constant in (10) is related to the decay of the neutral
kaon, and is applied to the mechanism of fermion mass
generation. In this section, the Θ constant, matter and
vacuum quantum numbers, and Θ constant and quantum
numbers are addressed.

6.1 Θ constant

Under the constraint of the extremely flat universe re-
quired by quantum gauge theory, the Θ constant in (6),
Θ = 10−61ρG/ρm, depends on the gauge boson mass MG

since ρG = M4
G: Θ = 10−61M4

G/ρc � 10−4 at the weak
scaleMG � 102GeV. Since the gauge boson mass depends
on the Weinberg mixing angle θW,M ′

G → MG sin θW, dur-
ing the DSSB of the SU(3)I → SU(2)L × U(1)Y or the
SU(2)L×U(1)Y → U(1)e gauge theory, the change of the
Θ constant depends on θW: ∆Θ ∝ sin4 θW = ie2f . Note
that the isospin factor iwf = sin2 θW � 1/4 and the weak
boson mass MW = MZ cos θW. The relation between the
Θ constant and the difference number Nsd is given by

Θ = π2i4fα
4
im

4
fN

2
sd/10

61ρc (50)

from (10) and (44). Θ values become ΘEW ≈ 10−4 and
ΘQCD ≈ 10−13 at different stages. This is consistent with
the observed results, Θ < 10−9 in the electric dipole mo-
ment of the neutron and Θ � 10−3 in the neutral kaon
decay.

6.2 Matter and vacuum quantum numbers

There is a condensation process in the fermion mass gener-
ation mechanism. This process is the dual pairing mecha-
nism of constituent fermions, which makes boson-like par-
ticles of paired fermions. At the phase transition, Nsc

becomes zero so that Nsd becomes the maximum. Us-
ing the relations MG = π1/2mf ifαi(N

1/2
sd ) and M2

G =
M2

H − ifg
2
i 〈φ〉2 = ifg

2
i [φ

2 − 〈φ〉2], the zero-point energy
M2

H = πm2f i
2
fα
2
iNss and the reduction of the zero-point

energy 〈φ〉2 = m2f ifαiNsc/4 are obtained. The difference
number of right–left-handed singlet fermions Nsd in in-
trinsic two-space dimensions suggests the introduction of
a degenerate particle number Nsp in the intrinsic radial
coordinate and an intrinsic principal number nm; parti-
cle quantum numbers are related by n4m = N2

sp = Nsd

and the Dirac quantization condition i
1/2
f gigim = 2πNsp

is satisfied. The Nsp is thus the degenerate state number
in the intrinsic radial coordinate that has the same princi-
pal number nm. The intrinsic principal quantum number
nm consists of three quantum numbers, that is, nm =
(nc, ni, ns), where nc is the intrinsic principal quantum
number for the color space, ni is the intrinsic principal
quantum number for the isospin space, and ns is the in-
trinsic principal quantum number for the spin space. The
intrinsic quantum numbers (nc, ni, ns) take integer num-
bers. A fermion therefore possesses a set of intrinsic quan-
tum numbers (nc, ni, ns) to represent its intrinsic quantum
states.

This concept automatically adopts the three types of
intrinsic angular momentum operators, Ĉ, Î, and Ŝ, when
the intrinsic potentials for color, isospin, and spin charges
are central so that they depend on the intrinsic radial dis-
tance: for instance, the color potential in the strong inter-
actions is dependent on the radial distance. The intrinsic
spin operator Ŝ has a magnitude squared 〈S2〉 = s(s+ 1)
and s = 0, 1/2, 1, 3/2, · · · , (ns − 1). The third component
of Ŝ, Ŝz, has half integer or integer quantum number in
the range of −s ∼ s with the degeneracy 2s + 1. The
intrinsic isospin operator Î analogously has a magnitude
squared 〈I2〉 = i(i+ 1) and i = 0, 1/2, 1, 3/2, · · · , (ni − 1).
The third component of Î, Îz, has half integer or inte-
ger quantum number in the range of −i ∼ i with the
degeneracy 2i + 1. The intrinsic color operator Ĉ anal-
ogously has a magnitude squared 〈C2〉 = c(c + 1) and
c = 0, 1/2, 1, 3/2, · · · , (nc − 1). The third component of
Ĉ, Ĉz, has half integer or integer quantum number in the
range of −c ∼ c with the degeneracy 2c+1. The principal
number nm in intrinsic space quantization is very much
analogous to the principal number n in extrinsic space
quantization and the intrinsic angular momenta are anal-
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ogous to the extrinsic angular momentum so that the total
angular momentum has the form of J = L + S + I + C,
which is the extension of the conventional total angular
momentum J = L + S. The intrinsic principal number
nm denotes the intrinsic spatial dimension or radial quan-
tization: nc = 3 represents the strong interactions as an
SU(3)C gauge theory and ni = 3 represents the weak in-
teractions as an SU(3)I gauge theory. For QWD as the
SU(3)I gauge theory, there are nine weak gauge bosons
(n2i = 32 = 9), which consist of one singlet gauge boson
G0 with i = 0, three degenerate gauge bosons G1 ∼ G3
with i = 1, and five degenerate gauge bosons G4 ∼ G8
with i = 2; for the GWS model as the SU(2)L × U(1)Y
gauge theory, one singlet gauge boson G0 with i = 0, three
gauge bosons G1 ∼ G3 with i = 1, and one gauge boson
G8 with i = 2 are required. One explicit piece of evidence
of colorspin and isospin angular momenta is the strong
isospin symmetry in nucleons, which is postulated to be
the combination symmetry of colorspin and weak isospin
in this scheme. Other evidence is the nuclear magnetic
dipole moment: the Landé spin g-factors of the proton
and neutron are respectively gps = 5.59 and gns = −3.83,
which are shifted from 2 and 0, because of contributions
from color and isospin degrees of freedom as well as spin
degrees of freedom. The mass ratio of the proton and the
constituent quark, mp/mq ∼ 2.79, thus represents three
intrinsic degrees of freedom of color, isospin, and spin.
In fact, the extrinsic angular momentum associated with
the intrinsic angular momentum may be decomposed by
L = Li + Lc + Ls, where Li is the angular momentum
originating from the isospin charge, Lc is the angular mo-
mentum originating from the color charge, and Ls is the
angular momentum originating from the spin charge. This
is supported by the fact that the orbital angular momen-
tum lc of a nucleon has a different origin from the color
charges with the orbital angular momentum li of the elec-
tron from the isospin charge, since two angular momenta
have opposite directions from the information of the spin–
orbit couplings in nucleus and atoms. Extrinsic angular
momenta have extrinsic parity (−1)l = (−1)(lc+li+ls), in-
trinsic angular momenta have intrinsic parity (−1)(c+i+s),
and the total parity becomes (−1)(l+c+i+s) for the electric
moments; while the extrinsic angular momenta have ex-
trinsic parity (−1)(l+1) = (−1)(lc+li+ls+1), the intrinsic
angular momenta have intrinsic parity (−1)(c+i+s+1), and
the total parity becomes (−1)(l+c+i+s+1) for the magnetic
moments.

Fermions increase their masses by decreasing their in-
trinsic principal quantum numbers from the higher ones
at higher energies to the lower ones at lower energies. The
coupling constant αi of a non-Abelian gauge theory is
strong for the small Nsd and is weak for the large Nsd

according to the renormalization group analysis. The vac-
uum energy is described by the zero-point energy in units
of ω/2 with the maximum number Nsd � 1061 and the
vacuum is filled with fermion pairs of up and down col-
orspins, isospins, or spins, whose pairs behave like bosons
quantized by the unit of ω: this is analogous to the su-
perconducting state of fermion pairs. The intrinsic par-

ticle number Nsp � 1030 (or B � 10−12, L � 10−9)
characterizes gravitational interactions for fermions with
the mass 10−12GeV, Nsp � 106 (or Le � 1) character-
izes the weak interactions for electrons, and Nsp � 1 (or
B � 1) characterizes the strong interactions for nucleons.
The fundamental particles known as leptons and quarks
are hence postulated to be composite particles with the
color, isospin, and spin quantum numbers; the quark is a
color triplet state, but the lepton is a color singlet state.
Note that if Nsp > 1 (or B < 1), it represents a point-
like fermion and if Nsp < 1 (or B > 1), it represents
a composite fermion. There is accordingly the possibility
of internal structure for the lepton or quark when they
are considered as composite particles. Since the Θ con-
stant is thus parameterized by Θ = 10−61ρG/ρm with the
vacuum energy density ρG = M4

G and the matter energy
density ρm � ρc � 10−47GeV4, the relation between the
Θ constant and the difference number Nsd is given by
Θ = π2m4f i

4
fα
4
iN

2
sd/10

61ρc.
The weak vacuum represented by massive gauge

bosons is quantized by the maximum wavevector mode
NR ≈ 1030, the total gauge boson number NG = 4πN3

R/
3 ≈ 1091, and the gauge boson number density nG =
Λ3EW ≈ 1047 cm−3. Baryon matter represented by massive
baryons is spatially quantized by the maximum wavevec-
tor mode NF ≈ 1026 and the total baryon number B =
NB = 4πN3

F /3 ≈ 1078 [7,19]. The baryon matter quanti-
zation described above is consistent with the nuclear mat-
ter density nn ≈ nB ≈ 1.95 × 1038 cm−3 and Avogadro’s
number NA = 6.02 × 1023mol−1 ≈ 1019 cm−3 in the mat-
ter. Electrons with the mass 0.5MeV might be similarly
quantized by NF ≈ 1027 and the total number 1081 if
the electron number is conserved under the assumption of
Ωe = ρe/ρc ≈ 1: since the conservation of the baryon num-
ber minus the lepton number (B−L) as well as the baryon
number (B) and the lepton number (L) is a good quan-
tum number at low energies, the total electron number
1081, different from the total baryon number 1078, suggests
lepton matter as dark matter. The maximum wavevec-
tor mode NF is close to 1030 if the quantization unit of
fermions 10−12GeV (the baryon number B � 10−12) is
used rather than the unit of baryons, 0.94GeV (the baryon
number B = 1) under the assumption of the fermion num-
ber conservation Nf � 1091.

6.3 Θ constant and quantum numbers

The invariance of the gauge transformation provides us
with ψ[Ôν ] = eiνΘψ[Ô] for the fermion wave function ψ

with the transformation of an operator Ô by the class ν
gauge transformation, Ôν : the vacuum state characterized
by the constant Θ is called the Θ vacuum [13]. The true
vacuum is the superposition of all the |ν〉 vacua with the
phase eiνΘ: |Θ〉 =

∑
ν e
iνΘ|ν〉. The topological winding

number ν or the topological charge qs is defined by

ν = ν+ − ν− =
∫

ifg
2
i

16π2
TrFµνF̃µνd4x, (51)
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where the subscripts + and − denote moving particles
with chiralities + and − respectively in the presence of
the gauge fields [38]. The matter energy density generated
by the surface effect is postulated to be

ρm � ρc � ifg
2
i

16π2
TrFµνF̃µν , (52)

which implies that the fermion mass is generated by the
difference of the fermion numbers moving to left- and
right-handed directions. In this respect, the difference
number Nsd, the left-handed fermion number Nss, and
the condensed right-handed fermion number Nsc in in-
trinsic two-space dimensions respectively correspond to ν,
ν+, and ν− in three space and one time dimensions. In
the presence of the Θ term, the singlet (V+A) current
is not conserved due to an Adler–Bell–Jackiw anomaly
[12]: ∂µJ1+γ

5

µ = (Nf ifg
2
i /16π

2)TrFµνF̃µν , with the flavor
number of fermions Nf , and this reflects degenerate multi-
ple vacua. This illustrates mass generation by the surface
effect due to the field configurations with parallel isospin
electric and magnetic fields. If ν = ρm/ρG is introduced
from (51) and (52), the condition Θν = 10−61 is satisfied.
The Θ value parameterized by Θ = 10−61ρG/ρm is consis-
tent with the observed result, Θ � 10−3, in neutral kaon
decay [16].

The topological winding number ν is related to the
intrinsic quantum number nm by ν = n−8

m . The intrin-
sic principal number nm is also connected with Nsp and
Nsd: n2m = Nsp, N2

sp = Nsd, and N4
sp = 1/ν. The relation

between the intrinsic radius and the intrinsic quantum
number might be written ri = r0i/n

2
m, with the radius

r0i = 1/2mfαz = Nsp/MG. The intrinsic quantum num-
bers are exactly analogous to the extrinsic quantum num-
bers. The extrinsic principal number n for the nucleon
is related to the nuclear mass number A or the baryon
quantum number B: n2 = A1/3, n4 = A2/3, n6 = B = A.
The relation between the nuclear radius and the extrinsic
quantum number is outlined by

r = r0A
1/3 = r0n

2, (53)

with the radius r0 = 1.2 fm and the nuclear principal num-
ber n. This is analogous to the atomic radius re = r0n

2
e

with the atomic radius r0 and the electric principal num-
ber ne: the atomic radius r0 = 1/2meαy is almost the
same as the Bohr radius aB = 1/meαe = 0.5 × 10−8 cm.
These concepts are related to the constant nuclear density
nB = 3/4πr30 = 1.95 × 1038 cm−3 or Avogadro’s number
NA = 6.02×1023mol−1 and to the constant electron den-
sity ne = 3/4πr3e = 6.02 × 1023Zρm/A with the nuclear
mass density ρm in units of g/cm3, where the possible
relation is

re = r0L
1/3 = r0n

2
e, (54)

with the lepton number L.
The Θ values according to (10) become ΘPl ≈ 1061,

ΘEW ≈ 10−4, ΘQCD ≈ 10−13, and Θ0 ≈ 10−61 at differ-
ent stages. The scope of Θ = 1061 ∼ 10−61 corresponds to
the scope of ν = 10−122 ∼ 100 to satisfy the flat universe

condition νΘ = 10−61: the maximum quantization num-
ber Nsp � NR � 1030 and NG � 4πN3

R/3 � 1091. The
maximum wavevector mode NR = (ρG/Θρm)1/2 = 1030
of the weak vacuum is obtained. These describe possible
dualities between intrinsic quantum numbers and extrin-
sic quantum numbers: nm and n, N3

sp and A, and 1/ν
and A4/3 for baryons. The Θ term as the surface term
modifies the original GWS model [1] for the weak interac-
tions, which has a problem in the fermion mass violating
gauge invariance, and this suggests mass generation as the
non-perturbative breaking of gauge and chiral invariance
through DSSB.

7 Comparison among quantum
weakdynamics, Glashow–Weinberg–Salam
model, and grand unified theory

This section is devoted to a summary, and to show QWD
extending beyond the SM or toward a new GUT as an
SU(3)C×SU(3)I gauge theory. Table 3 summarizes a com-
parison among QWD, GWS model, and GUT. GUT in
the table represents SU(5) gauge theory or SO(10) gauge
theory [3].

There are many unexplained phenomena in the SM.
For instances, there are no clues in the SM for many free
parameters, three family generations for the leptons and
quarks, matter mass generation, the Higgs problem or vac-
uum problem, dynamical spontaneous symmetry breaking
(DSSB) beyond spontaneous symmetry breaking, the neu-
trino mass problem, etc. In order to resolve these prob-
lems, grand unified theories (GUTs) were proposed [3].
Nevertheless, the grand unification of strong and elec-
troweak interactions is not complete and GUTs also have
model dependent problems: the hierarchy problem, pro-
ton decay, and the Weinberg angle are problems in SU(5)
gauge theory [3].

Already confirmed predictions of QWD generating the
GWS model are discrete symmetry breaking, V − A cur-
rent conservation, massive gauge bosons, the Fermi weak
coupling constant GF, the Weinberg angle sin2 θW = 1/4,
the Cabbibo angle sin θC = 1/4, and the three generations
of leptons and quarks as discussed in Sect. 3.

New predictions from QWD beyond the GWS model,
which are to be tested by experiments, are as follows:
the existence of isospin 3/2 leptons or quarks in addi-
tion to isospin 1/2 fermions, the eight-fold way of isospin
1/2 fermions as composite particles, CP violation with
Θ � 10−4 order, the existence of massive gauge bosons
G4 ∼ G7 with isospin 2 in addition to gauge bosons G1 ∼
G3 with isospin 1, the (B−L) current conservation above
the weak scale, the new unification scale of the strong
and weak forces at the order of 103GeV, fermion mass
generation, neutrino mass and oscillation confirmed by re-
cent experiments, quark flavor mixing due to color charge,
the isospin coupling constant hierarchy (αi, αz = αi/3,
αw = αw/4, αy = αi/12, and αe = αi/16), the lepton
asymmetry in the universe, neutron–antineutron oscilla-
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Table 3. Comparison among quantum weakdynamics, Glashow–Weinberg–Salam model,
and grand unified theory

Classification QWD GWS GUT

Grand unification energy 103 GeV 1015 GeV
Symmetry breaking DSSB SSB SSB
Discrete symmetries (P , C, T , CP ) breaking breaking breaking
Θ vacuum yes no no
Higgs bosons no yes yes
Lepton number conservation yes yes no
Electron number conservation yes (Ne � 1081) yes yes
Baryon number conservation no no no
Proton decay unknown no yes
Electron decay unknown no unknown
Weinberg angle sin2 θW = 1/4 free parameter sin2 θW = 3/8
Cabbibo angle sin θC = 1/4 free parameter free parameter
Fermion mass generation yes unsatisfactory unsatisfactory
Coupling constant hierarchy yes no no
Neutrino mass yes no unknown
Number of gauge bosons 9 4 24
Free parameters coupling constant many several

tions, the analogy between QWD and QCD as SU(3)
gauge theories, etc.

8 Conclusions

This study proposes that a certain group H leads to an
SU(3)I × SU(3)C group for weak and strong interactions
at a grand unification scale through dynamical sponta-
neous symmetry breaking (DSSB); the group chain isH ⊃
SU(3)I ×SU(3)C . The grand unification of the SU(3)I ×
SU(3)C group beyond the standard model with the group
SU(3)C ×SU(2)L×U(1)Y provides the coupling constant
αi = αs � 0.12 at a new grand unification scale around
103GeV, which might be the resolution to the hierarchy
problem of the grand unification scale 1015GeV. DSSB
consists of two simultaneous mechanisms; the first mech-
anism is the explicit symmetry breaking of gauge sym-
metry, which is represented by the isospin (isotope) fac-
tor if and the weak coupling constant gi, and the sec-
ond mechanism is the spontaneous symmetry breaking
of gauge fields, which is represented by the condensation
of the pseudo-scalar fields postulated as spatially longi-
tudinal components of the gauge fields. At the energy
T � 102GeV, the gauge boson number density nG =
M3

G ≈ 106GeV3 ≈ 1047 cm−3, the vacuum energy den-
sity V0 = M4

G ≈ 108GeV4 ≈ 1025 gcm−3, and the total
gauge boson number NG ≈ 1091 are predicted.

Quantum weakdynamics (QWD) as an SU(3)I gauge
theory predicts the free parameters in the GWS model
being an SU(2)L × U(1)Y gauge theory. QWD provides
the Weinberg angle, the Cabbibo angle, quark and lepton
families, a modification of the Higgs mechanism, fermion
mass generation, etc. QWD is dynamically spontaneous
symmetry broken through the condensation of pseudo-
scalar bosons. QWD generates electroweak theory as an
SU(2)L × U(1)Y gauge theory at the electroweak scale

and then electroweak theory produces QED as a U(1)e
gauge theory through DSSB. The essential point is that
the DSSB mechanism is adapted to all the interactions
characterized by gauge invariance, the physical vacuum
problem, and discrete symmetry breaking. This work sug-
gests that the electroweak interactions originate from the
SU(3)I gauge theory for the weak force, provided that
scalar bosons play the roles of Higgs particles produc-
ing DSSB. The effective coupling constant chain due to
massive gauge bosons is GH ⊃ GF × GR for grand unifi-
cation, weak, and strong interactions respectively. Quark
and lepton families seem to be successfully generated in
terms of the mixing of the SU(2) three subgroups in two
octets. The DSSB of local gauge symmetry and global
chiral symmetry triggers the (V + A) current anomaly.
The (V − A) current conservation and the (V + A) cur-
rent non-conservation are thus explained and the absence
of right-handed neutrinos is a result of the (V + A) cur-
rent non-conservation. The electroweak coupling constants
derived in terms of the Weinberg angle sin2 θW = 1/4
are αz = izfαi = αi/3 � 0.04, αw = iwf αi = αi/4 �
0.03, αy = iyfαi = αi/12 � 0.01, and αe = iefαi =
αi/16 � 1/133 for symmetric isospin interactions at the
weak scale and −2αi/3, −αi/2, −αi/6, and −αi/8 for
asymmetric isospin interactions. The isospin factors are
isf = (izf , i

w
f , i

y
f , i

e
f ) = (1/3, 1/4, 1/12, 1/16) for symmet-

ric interactions and iaf = (−2/3,−1/2,−1/6,−1/8) for
asymmetric interactions: iwf = sin2 θW and ief = sin4 θW.
The symmetric charge factors reflect an intrinsic even par-
ity with repulsive force while the asymmetric charge fac-
tors reflect an intrinsic odd parity with attractive force;
this suggests electromagnetic duality. The Cabbibo angle
sin θC � 1/4 predicts that two more massive gauge bosons
with MG = 2MW in addition to four intermediate vec-
tor bosons exist at the weak scale for symmetric isospin
interactions and quark flavor mixing is due to color de-
grees of freedom for quarks. QWD for weak interactions
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is also proposed as the analogous dynamics of QCD for
strong interactions. Common characteristics of gauge the-
ories, such as gauge symmetry, the true vacuum problem,
and discrete symmetry breaking for both weak and strong
interactions, are understood in terms of the concepts of
the analogy property and the DSSB mechanism.

The mechanism of fermion mass generation is sug-
gested in terms of the DSSB of gauge symmetry and chi-
ral symmetry known as the dual pairing mechanism of
the superconducting state: MG = π1/2mf ifαiN

1/2
sd with

the difference number of right–left-handed fermions Nsd

in intrinsic two-space dimensions. The Θ constant is pa-
rameterized by Θ = 10−61ρG/ρm with the vacuum en-
ergy density ρG = M4

G and the matter energy density
ρm. Nsd suggests the introduction of a degenerate particle
number Nsp in the intrinsic radial coordinate and an in-
trinsic principal number nm; particle numbers are linked
to the relation n4m = N2

sp = Nsd and the Dirac quantiza-

tion condition i1/2f gigim = 2πNsp is satisfied. The intrinsic
principal quantum number nm consists of three quantum
numbers, that is, nm = (nc, ni, ns) where nc is the in-
trinsic principal quantum number for the color space, ni
is the intrinsic principal quantum number for the isospin
space and ns is the intrinsic principal quantum number
for the spin space. This concept automatically adopts the
three types of intrinsic angular momentum operators, Ĉ,
Î, and Ŝ, when the intrinsic potentials for color, isospin,
and spin charges are central so that they depend on the
intrinsic radial distance. The principal number nm in in-
trinsic space quantization is very much analogous to the
principal number n in extrinsic space quantization and the
intrinsic angular momenta are analogous to the extrinsic
angular momentum so that the total angular momentum
has the form of J = L+S+ I+C, which is the extension
of the conventional total angular momentum J = L + S.
The intrinsic particle number Nsp � 106 (or Le � 1) char-
acterizes weak interactions for electrons, and Nsp � 1 (or
B � 1) characterizes strong interactions for nucleons. Fun-
damental particles known as leptons and quarks are hence
postulated as composite particles with the color, isospin,
and spin quantum numbers; the quark is a color triplet
state but the lepton is a color singlet state. If Nsp > 1 (or
B < 1), it represents a point-like fermion and if Nsp < 1
(or B > 1), it represents a composite fermion. The Θ
value defined by Θ = 10−61ρG/ρm is consistent with the
observed result, Θ � 10−3, in neutral kaon decay. The
fact that a gauge theory allows one to generate the masses
of fermions and gauge bosons without spoiling the renor-
malizability is very important; the renormalizability of a
gauge theory with spontaneous symmetry breaking was
demonstrated by ’t Hooft [39].

In this scheme, the vacuum and matter energies are
spatially quantized as well as the photon energy. The weak
vacuum represented by massive gauge bosons is quantized
by the maximum wavevector mode NR ≈ 1030, the to-
tal gauge boson number NG = 4πN3

R/3 ≈ 1091, and the
gauge boson number density nG = Λ3EW ≈ 1047 cm−3. The
baryon matter represented by massive baryons is quan-
tized by the maximum wavevector mode (Fermi mode)

NF ≈ 1026 and the total baryon number B = NB =
4πN3

F /3 ≈ 1078. Electrons might be similarly quantized
by the maximum wavevector mode NF ≈ 1027 and the
total particle number Le = Ne ≈ 1081 for electrons with
the mass 0.5MeV. The maximum wavevector mode NF

is close to 1030 if the quantization unit of the fermions
10−12GeV is used rather than the unit of baryons
0.94GeV under the assumption of the fermion number
conservation. The baryon matter quantization described
above is consistent with the nuclear matter density nn ≈
nB ≈ 1.95 × 1038 cm−3 and Avogadro’s number NA =
6.02 × 1023mol−1 ≈ 1019 cm−3 in the matter. Massless
photons are quantized by the maximum wavevector mode
Nγ ≈ 1029 and the total photon number Ntγ = 4πN3

γ/3 ≈
1088. These total particle numbers NG ≈ 1091, NB ≈ 1078,
and Ntγ ≈ 1088 are conserved good quantum numbers.
The quantization unit of vacuum energy due to a gauge
boson in the weak interactions is ΛEW/NR � 10−28GeV.

The notable accomplishments of this work are sum-
marized in the following. The grand unification of the
SU(3)I×SU(3)C gauge theory beyond the standard model
of the SU(3)C×SU(2)L×U(1)Y gauge theory is suggested
in the scale around 103GeV rather than in the conven-
tional unification scale 1015GeV. This seems to be a viable
solution of the hierarchy problem. The unification of the
SU(2)L × U(1)Y electroweak theory, the GWS model, is
developed in terms of the SU(3)I gauge theory, QWD, if
scalar bosons postulated to be spatially longitudinal com-
ponents of the gauge bosons play the roles of Higgs parti-
cles during DSSB. The DSSB of local gauge symmetry and
global chiral symmetry gives rise to the (V + A) current
anomaly. The quark and lepton families are successfully
generated from two octets of triplet isospin combinations,
and the predicted Weinberg angle and Cabbibo angle are
in good agreement with the experimental values. Photons
are regarded as massless gauge bosons indicating DSSB
and the fine structure constant in the electromagnetic in-
teractions is related to the fine structure constant in weak
interactions, αe = αi/16. Fermion mass generation is sug-
gested in terms of the DSSB of gauge symmetry and chi-
ral symmetry due to the (V + A) current anomaly. The
baryon minus lepton number (B−L) conservation is a con-
sequence of the SU(3)I gauge theory, the lepton number
conservation is a consequence of the U(1)Y gauge theory,
and the electron number conservation is a consequence of
the U(1)e gauge theory. The development of this theory
would thus shed light on understanding the fundamental
forces in nature and its consequences play significant roles
in various fields since point-like particles like quarks and
leptons are more or less governed by the electroweak force
explained by QWD.
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